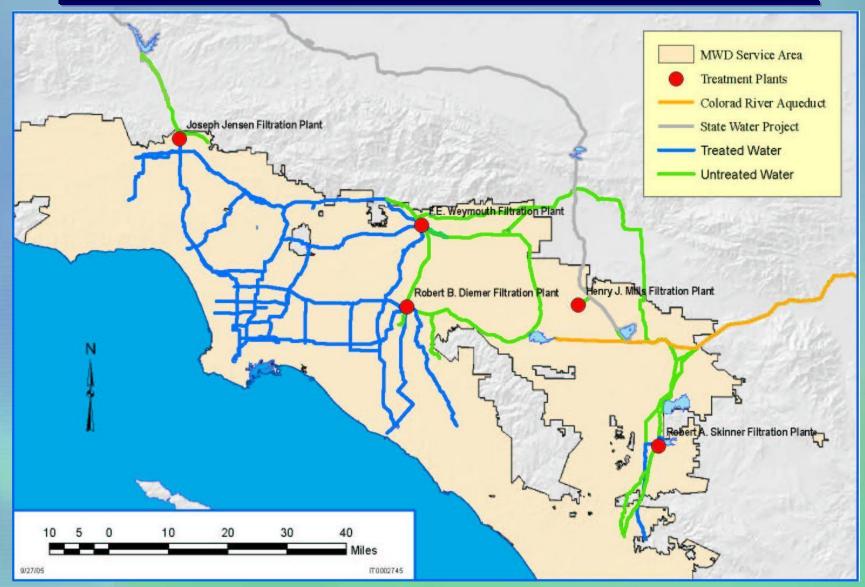
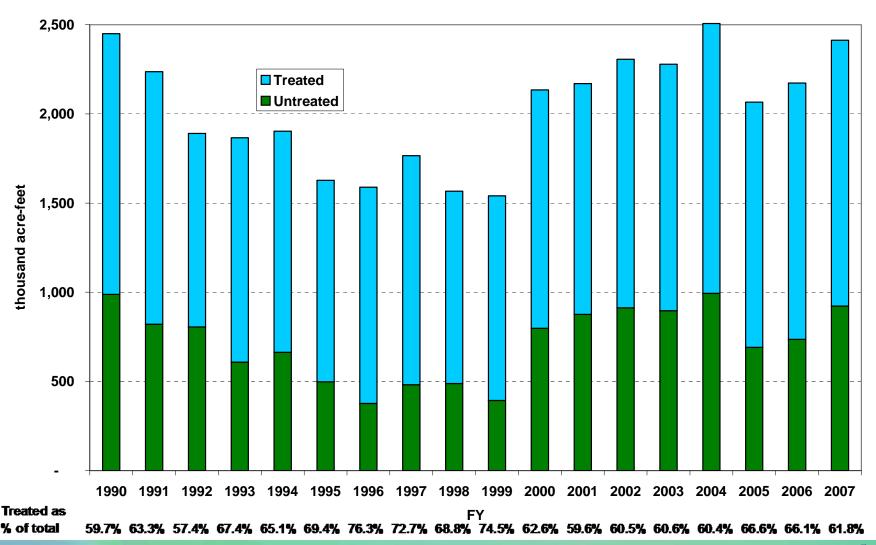
Treatment Charges Presentation

October 2, 2007



Discussion Outline


- A. Treatment Surcharge Background Issues
- B. Existing Treatment Surcharge
- C. Rate Structure Alternatives
- D. Evaluation of Rate Alternatives

A. Treatment Surcharge Background Issues

MWD Treatment Plants and the Imported Water Distribution System

Treated and Untreated Water Deliveries

5

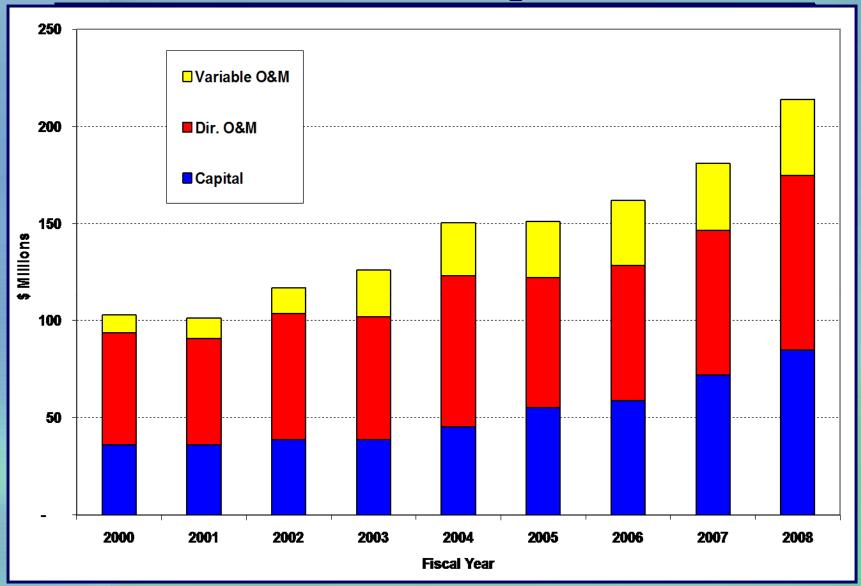
Water Treatment Plant Usage and Peaking

Calendar year 2005 through Sept 17, 2007

Facility	Design Capacity (cfs)	Average Demand (cfs)	Peak Day* (cfs)	Capacity Factor	Peaking Factor
Diemer	803	409	778	51%	1.90
Jensen	1163	601	1002	52%	1.67
Mills	505	132	281	26%	2.13
Skinner	930	547	835	59%	1.53
Weymouth	803	371	726	46%	1.96
Total	4,204				

*Peak day average flow

Treated Water Usage


	FY 1990-2007 (acre-feet)		CY 2005-2007 (cfs)				
	Average	Maximum	Minimum	Average	Max	Peak	
Member Agency	Annual	Annual	Annual	Day	Day	factor	Peak day
Anaheim	14,202	31,611	4,641	14	40	2.9	27-Sep-2005
Beverly Hills	13,109	14,867	11,918	20	34	1.7	5-Sep-2007
Burbank	14,888	22,839	8,154	22	36	1.7	23-Aug-2005
Calleguas	112,084	136,565	86,263	216	264	1.2	31-May-2005
Central Basin	73,802	99,814	61,033	101	131	1.3	24-Jul-2006
Compton	3,962	5,620	2,892	5	8	1.5	24-Jul-2005
Eastern	68,503	99,347	43,234	181	256	1.4	1-Sep-2007
Foothill	10,756	14,831	8,394	17	25	1.5	1-Sep-2007
Fullerton	10,937	17,795	5,713	20	37	1.9	14-Sep-2007
Glendale	25,715	29,135	21,948	37	57	1.5	26-Jul-2006
Inland Empire	0	0	0	0	0	0.0	
Las Virgenes	20,567	25,373	15,293	38	45	1.2	9-May-2007
Long Beach	46,796	57,560	34,700	41	73	1.8	28-Aug-2005
Los Angeles	96,806	232,272	46,390	94	186	2.0	24-Jul-2006
MWDOC	236,597	289,625	157,654	368	454	1.2	25-Jul-2006
Pasadena	22,036	33,603	15,508	45	67	1.5	26-Jul-2006
San Diego CWA	229,833	288,911	159,961	470	587	1.2	24-Jul-2006
San Fernando	451	1,049	0	5	7	1.4	10-May-2007
San Marino	1,210	1,998	442	4	8	2.1	24-Jul-2006
Santa Ana	16,010	22,007	7,135	20	31	1.5	31-Jul-2006
Santa Monica	10,280	14,444	4,689	20	28	1.4	27-Jun-2006
Three Valleys	47,965	65,424	35,155	88	134	1.5	17-Aug-2007
Torrance	21,031	23,804	16,386	33	42	1.3	22-Jun-2005
Upper San Gabr	12,013	27,675	5,967	25	42	1.7	18-Jul-2006
West Basin	153,292	184,679	140,064	226	276	1.2	20-Jul-2005
Western MWD	44,707	87,968	19,909	153	235	1.5	15-Jul-2006
Total				2,263	3,103	1.4	
Data include Replenishment deliveries.				Peak flows ne	t of Replen	ishment se	rvice.

Revenue Requirements by Service Function

(FY 2007/08 in millions \$)

Source of Supply	\$ 112.2	
Conveyance & Aqueduct	\$ 478.6	
Storage	\$ 122.3	
Treatment	\$ 214.9	
Distribution	\$ 115.8	
Demand Management	\$ 57.5	
Total Revenue Requirements	\$ 1,101.3	100%
Less: Hydroelectric	\$ (13.7)	
Net Revenue Requirements	\$ 1,087.6	

Treated Water Net Revenue Requirements

Treatment Surcharge Trend

	Effective January 1						
	2003	2004	2005	2006	2007	2008	
Rate per acre foot	\$ 82	\$ 92	\$112	\$122	\$147	\$157	
% Annual Change		12.2%	21.7%	8.9%	20.5%	6.8%	

Treatment Cost Drivers

- Major Treatment Capital Investments (e.g. ozone retrofit)
- Rising O&M costs
 - Chemicals
 - Electric Power

Treatment Peaks and Rate Equity

- Infrastructure must be designed to meet peak demand.
- Relying on MWD for daily peaks drives capital costs higher.
- Current rate structure recovers peaking costs uniformly through a volume charge paid by all member agencies.

Existing Treatment Surcharge

MWD Cost of Service and Rate Process

Revenue Requirements

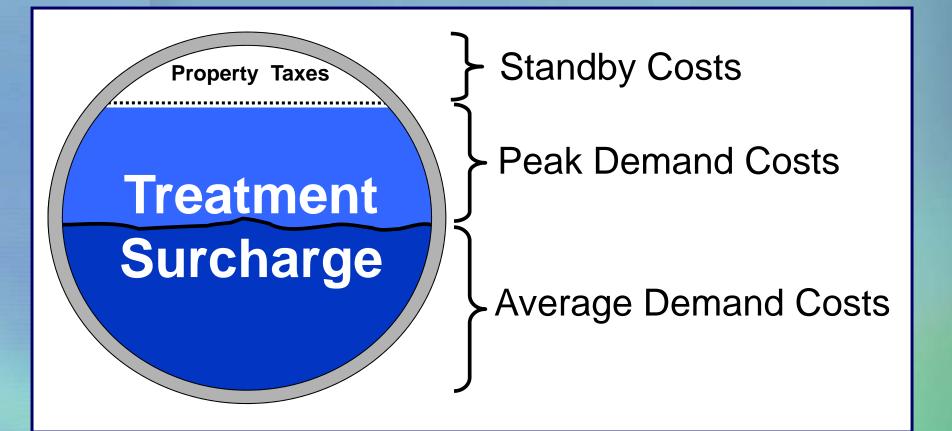
Customer Rates

Supply Rates (T1/T2) System Access Rate Water Stewardship Rate System Power Rates Full-Service Untreated Bundled Replenishment Rate, Untreated IAWP, Untreated **Treatment Surcharge** Full Service, Treated Bundled Treated Replenishment **Treated IAWP Readiness To Serve Charge** Capacity Charge

Functional Categories

Supply Conveyance & Aqueduct Storage **Treatment** Transmission Demand Management Administrative & General Hydroelectric

Classifications

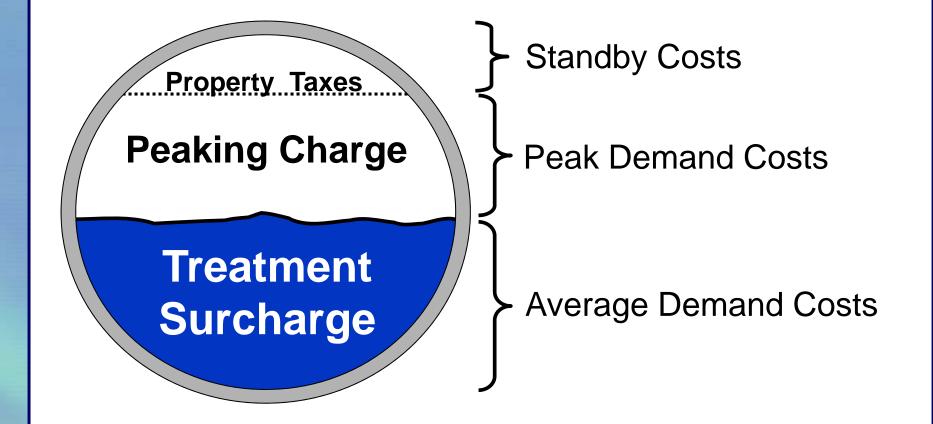

Fixed Demand Fixed Commodity Variable Commodity Fixed Standby Hydroelectric

Features of the Current Charge

- Uniform Rate
- \$157 per acre foot
- Constant charge throughout the year (peaking cost impact not assessed)
- Cost Classifications Recovered
 - Fixed Demand (\$44M)*
 - Fixed Commodity (\$123.6M)*
 - O&M Variable Commodity (\$47.4)*

*Costs are for FY 2008

Recovery of Treatment Costs



C. Rate Structure Alternatives

Rate Design Options

- Option 1: Peaking Charge
- Option 2: Treated Water Capacity Charge (TWCC)

Option 1: Peaking Charge

Treatment Peaking Charge Considerations

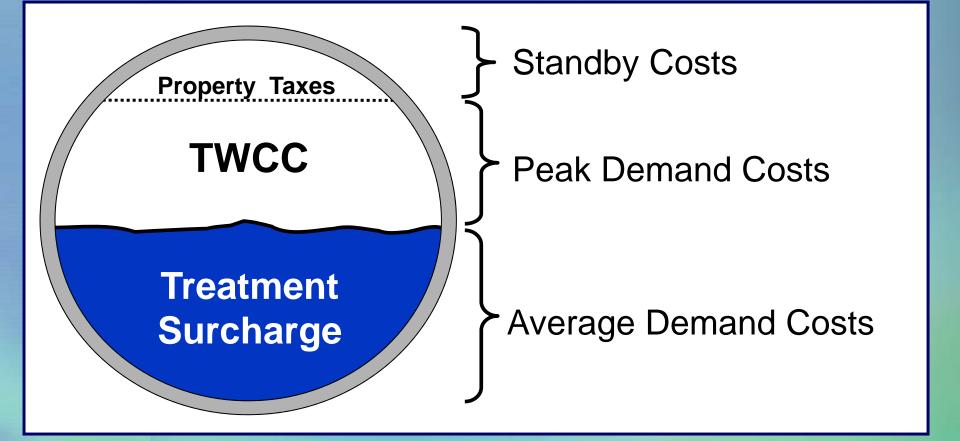
- Infrastructure must be built to accommodate peak demand.
- Higher peaks result in higher costs.
- These costs are currently shared by all users uniformly.
- Each user contributes differently to system peaks.
- A peaking charge would directly impact monthly bills.
- Equity principle implies that each member agency should pay costs of service.
- Charges should encourage more efficient use of system treatment resources.

Treatment Peaking Charge Design

- Analyze historical demand patterns.
- Analyze how peaking affects treatment costs.
- Calculate costs related to serving peak demand.
- Calculate system-wide volume rates for both average demand usage and peaking charge for peak demand usage.
- Estimate the impact of new charges on member agencies.
- Phase in new charges as appropriate.

Peaking Charge Advantages

Advantages


- Sends a strong signal to manage peaks
- Only applies to the extent that members exceed average demand
- More equitably allocates costs of service

Peaking Charge Disadvantages

Disadvantages

- Substantial rate impacts on some member agencies
- More volatility for charges and revenues

Option 2: Treated Water Capacity Charge

TWCC Considerations

- Most considerations are the same as under Option 1.
- Impacts on monthly bills are determined by historical data.

TWCC Design

- Review historical peaking patterns for each user.
- Determine three-year average seasonal peaks.
- Calculate costs related to serving peak demand.
- Develop a fixed capacity charge that will recover peaking costs.
- Estimate the impact of new charges on member agencies.
- Phase in new charges as appropriate.

TWCC Advantages/Disadvantages

Advantages

- Patterned after the existing capacity charge.
- Better revenue stability.
- Reduced rate volatility and rate shock.
- More equitably allocates costs of service.

Disadvantages

- Does not send as strong a signal to manage peaks.
- Total treatment charge not influenced as strongly by short-term changes in demand.

- System-wide wholesale peaking charges
 - San Antonio, Texas
 - Seattle, Washington
 - Tacoma Water Division (dual rate schedules)
- Other peaking approaches
 - Dallas Water Utilities (peak-driven minimum charge)
 - Jordan Valley Water Conservancy District (peaking cost allocations and seasonal surcharge)
 - Detroit Water and Sewer Department (peaking cost allocations)
 - Eugene Water & Electric Board (seasonal surcharge)
 - Metropolitan Utilities District (peak-driven minimum charge)

San Antonio Water System

- 5-step incremental surcharge for aboveaverage demand each month
- Monthly base usage level equals 90% of customer's annual average usage
- Unit charges increase as peaking increases

Seattle, Washington

- Contracts explicitly state that water is provided to meet average day demand.
- Contracts include surcharges for peaking.
- Also volumetric surcharge during summer months.
 - Summer rate in effect May 16 Sept. 15
 - Summer rate premium ~ 54%

Tacoma Water Division, Washington

- Two wholesale rate schedules.
- A customer's rate schedule depends on their summer/winter demand ratio.
- A ratio > 2.5 results in summer rates almost 90% higher than the winter rate.
- Summer rates for lower peaking customers are only 25% higher than winter rates.

Evaluation of Rate Alternatives

Evaluation Matrix

0	+	+
0	0	+
0	0	+
0	+	+
+	+	+

Rating Key

- **0** Meets requirements
- + Exceeds requirements
- Does not meet requirements

Evaluation Matrix

(Continued)

0	+	+
-	+	+
0	+	+
0	+	+
0	0	0

Rating Key

- **0** Meets requirements
- + Exceeds requirements
- Does not meet requirements

Discussion

Additional Survey Results

• Dallas Water Utilities

- Physical meter limitations on wholesale peaking.
- If a customer exceeds agreed-upon peaks, Dallas can change the contract to reflect higher peaks.
- New contract terms would enforce a higher minimum charge good for five years.

- Jordan Valley Water Conservancy District, Utah
 - Costs are calculated and allocated using peak day and peak hour demand data.
 - Each member agency is charged a different water rate based on demand patterns and pressure zones.
 - Also: a summer conservation rate premium of 25%.

- Detroit Water and Sewer Department
 - Peaking is used to allocate costs among wholesale customers.
 - Customers with higher peaks get higher rates.

- Eugene Water & Electric Board
 - Seasonal wholesale volumetric surcharge.
 - Surcharge months are May through October.
 - Summer surcharge is approximately 20%

- Metropolitan Utilities District, Omaha, Nebraska
 - Peak-driven "floating ratchet" minimum charge.
 - Billed demand is calculated as if the month's max day was in effect the entire month.
 - Each monthly bill is based on the peak day over the last 11 months, multiplied x 365/12

- Austin Water Utility, Texas
 - Peaking affects allocation of costs among wholesale customers.
 - Customers with higher peaks get higher rates.
 - New COS study may add conservation incentive to wholesale rates.